Geometry Shader·线框效果
Geometry Shader是介于 Vertex Shading 和Fragment Shading之间的步骤,其输入是Vertex Shader的输出,输出是Fragment Shader的输入。修改Geometry可以新增或删减顶点创造效果。
Extrude Pyramid
以一个extrude prymaid的shader为例,这个shader将在每一个三角面上新增顶点构成金字塔状凸起:
Shader "Lapu/TrianglePyramidExtrusion"
{
Properties
{
_MainTex("Texture", 2D) = "white" {}
_ExtrusionFactor("Extrusion factor", float) = 0
}
SubShader
{
Tags { "RenderType" = "Opaque" }
Cull Off
LOD 100
Pass
{
CGPROGRAM
#pragma vertex vert
#pragma geometry geom
#pragma fragment frag
// make fog work
#pragma multi_compile_fog
#include "UnityCG.cginc"
struct appdata
{
float4 vertex : POSITION;
float2 uv : TEXCOORD0;
float3 normal : NORMAL;
};
struct v2g
{
float4 vertex : SV_POSITION;
float2 uv : TEXCOORD0;
float3 normal : NORMAL;
};
struct g2f
{
float2 uv : TEXCOORD0;
UNITY_FOG_COORDS(1)
float4 vertex : SV_POSITION;
float4 color : COLOR;
};
sampler2D _MainTex;
float4 _MainTex_ST;
float _ExtrusionFactor;
v2g vert(appdata v)
{
v2g o;
o.vertex = v.vertex;
o.uv = v.uv;
o.normal = v.normal;
return o;
}
[maxvertexcount(9)]
void geom(triangle v2g IN[3], inout TriangleStream<g2f> triStream)
{
g2f o;
float4 barycenter = (IN[0].vertex + IN[1].vertex + IN[2].vertex) / 3;
float3 normal = (IN[0].normal + IN[1].normal + IN[2].normal) / 3;
for (int i = 0; i < 3; i++) {
int next = (i + 1) % 3;
o.vertex = UnityObjectToClipPos(IN[i].vertex);
UNITY_TRANSFER_FOG(o,o.vertex);
o.uv = TRANSFORM_TEX(IN[i].uv, _MainTex);
o.color = fixed4(0.0, 0.0, 0.0, 1.0);
triStream.Append(o);
o.vertex = UnityObjectToClipPos(barycenter + float4(normal, 0.0) * _ExtrusionFactor);
UNITY_TRANSFER_FOG(o,o.vertex);
o.uv = TRANSFORM_TEX(IN[i].uv, _MainTex);
o.color = fixed4(1.0, 1.0, 1.0, 1.0);
triStream.Append(o);
o.vertex = UnityObjectToClipPos(IN[next].vertex);
UNITY_TRANSFER_FOG(o,o.vertex);
o.uv = TRANSFORM_TEX(IN[next].uv, _MainTex);
o.color = fixed4(0.0, 0.0, 0.0, 1.0);
triStream.Append(o);
triStream.RestartStrip();
}
triStream.RestartStrip();
}
fixed4 frag(g2f i) : SV_Target
{
// sample the texture
fixed4 col = tex2D(_MainTex, i.uv) * i.color;
// apply fog
UNITY_APPLY_FOG(i.fogCoord, col);
return col;
}
ENDCG
}
}
}
一些常用方法:
-
#pragma geometry geom
:首先,和vert、frag方法一样,需要在shader初始声明geometry方法。 -
struct g2f{}
:一般也会创建一个struct用于geom到frag的计算。 -
[maxvertexcount(3)]
:maxvertexcount
让shader知道片元装载的最大顶点数量是多少。eg.如果保持原有图形,不对顶点做改变,那么就填3。如果要形成上述的三角锥凸起,就填3*3=9(位置重复的顶点需要累加)。
Wireframe
原理文档→文档,实现效果如下:
和上述shader同理,获取三角面的三个顶点。在Geom shader中根据三边的坐标计算三角形面积,然后根据面积计算三边的高度。之后在Frag shader中计算vertex到三边的最短距离,具体方法为取三角形三边中最短的高,若顶点距离边缘的距离小于阈值,则绘制线框。
smooth参数和最后一个lerp运算用于平滑base color和线框color。
shader代码如下:
Shader "Lapu/Wireframe"
{
Properties
{
_MainTex("MainTex", 2D) = "white" {}
_WireThickness("Wire Thickness", RANGE(0, 800)) = 100
_WireSmoothness("Wire Smoothness", RANGE(0, 20)) = 3
[HDR]_WireColor("Wire Color", Color) = (0.0, 1.0, 0.0, 1.0)
_Opacity("Opacity", Range(0 , 1)) = 4.5
_BaseColor("Base Color", Color) = (0.0, 0.0, 0.0, 1.0)
}
SubShader
{
Tags{"RenderType" = "Transparent" "Queue" = "Transparent"}
Pass
{
Cull Off
//AlphaToMask On
Blend One OneMinusSrcAlpha
CGPROGRAM
#pragma vertex vert
#pragma geometry geom
#pragma fragment frag
#include "UnityCG.cginc"
sampler2D _MainTex;
float4 _MainTex_ST;
float _WireThickness;
float _WireSmoothness;
float4 _WireColor;
float4 _BaseColor;
float _Opacity;
struct appdata
{
float4 vertex : POSITION;
float2 texcoord0 : TEXCOORD0;
UNITY_VERTEX_INPUT_INSTANCE_ID
};
struct v2g
{
float4 vertex : SV_POSITION;
float2 uv0 : TEXCOORD0;
float4 worldSpacePosition : TEXCOORD1;
UNITY_VERTEX_OUTPUT_STEREO //声明该顶点是否位于视线域中,来判断这个顶点是否输出到片段着色器。
};
struct g2f
{
float4 vertex : SV_POSITION;
float2 uv0 : TEXCOORD0;
float4 worldSpacePosition : TEXCOORD1;
float4 dist : TEXCOORD2;
float4 color : COLOR;//Todo:only show rect frame
UNITY_VERTEX_OUTPUT_STEREO
};
v2g vert(appdata v)
{
v2g o;
o.vertex = UnityObjectToClipPos(v.vertex);
o.worldSpacePosition = mul(unity_ObjectToWorld, v.vertex);
o.uv0 = TRANSFORM_TEX(v.texcoord0, _MainTex);
return o;
}
[maxvertexcount(3)]
void geom(triangle v2g i[3], inout TriangleStream<g2f> triangleStream)
{
float2 p0 = i[0].vertex.xy;
float2 p1 = i[1].vertex.xy ;
float2 p2 = i[2].vertex.xy;
float2 edge0 = p2 - p1;
float2 edge1 = p2 - p0;
float2 edge2 = p1 - p0;
//get area of triangle frag
float area = abs(edge1.x * edge2.y - edge1.y * edge2.x);
float wireThickness = 800 - _WireThickness;
g2f o;
o.uv0 = i[0].uv0;
o.worldSpacePosition = i[0].worldSpacePosition;
o.vertex = i[0].vertex;
o.dist.xyz = float3((area / length(edge0)), 0.0, 0.0) * o.vertex.w * wireThickness;
o.dist.w = 1.0 / o.vertex.w;
o.color = float4(_WireColor);
triangleStream.Append(o);
o.uv0 = i[1].uv0;
o.worldSpacePosition = i[1].worldSpacePosition;
o.vertex = i[1].vertex;
o.dist.xyz = float3(0.0, (area / length(edge1)), 0.0) * o.vertex.w * wireThickness;
o.dist.w = 1.0 / o.vertex.w;
o.color = float4(_WireColor);
triangleStream.Append(o);
o.uv0 = i[2].uv0;
o.worldSpacePosition = i[2].worldSpacePosition;
o.vertex = i[2].vertex;
o.dist.xyz = float3(0.0, 0.0, (area / length(edge2))) * o.vertex.w * wireThickness;
o.dist.w = 1.0 / o.vertex.w;
o.color = float4(_WireColor);
triangleStream.Append(o);
}
fixed4 frag(g2f i) : SV_Target
{
float minDistanceToEdge = min(i.dist[0], min(i.dist[1], i.dist[2])) * 0.01;
float4 baseColor = _BaseColor * tex2D(_MainTex, i.uv0);
// Early out if we know we are not on a line segment.
if (minDistanceToEdge > 0.99)
{
return fixed4(baseColor.rgb,1) * _Opacity;
}
// Smooth our line out
float t = exp2(_WireSmoothness * -1.0 * minDistanceToEdge * minDistanceToEdge);
fixed4 finalColor = lerp(baseColor, i.color, t);
finalColor.a = t;
return finalColor;
}
ENDCG
}
}
}